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Abstract

On the Internet, content producers often rely on profits made through banner ad
clicks. Therefore it is of interest to find ways to increase banner ad click-through
rates (CTR). One way to further this goal is targeted advertising, in which the
profile of the visiting user is used to determine which ads he or she would be
interested in. This seminar report surveys multi-armed bandit and reinforcement
learning approaches to targeted advertising. Thompson sampling, mortal bandits,
as well as temporal difference based methods such as concurrent reinforcement
learning are the methods considered.

1 Introduction

In an age where a huge amount of information and news can be found free-of-charge online, many
content producers on the Internet rely on advertisement revenues to fund their operations. Often this
advertisement is deployed in the form of clickable banner ads, either textual, graphical, animated or
even interactive content, usually separated from the main content, and designed to attract the interest
of visitors. When a visitor clicks such a banner, they are redirected to the advertiser’s site, and the
content producer is financially compensated for the referral.

In this kind of advertising, it is in the interest of the content producer to maximize click-through rate
(CTR) of the banner ads: the number of times clicked divided by impressions, the number of times
shown. If a content producer has several ad banners it could show to the user, one strategy could
be just to fill up the web site with ads. However this can quickly lead to user annoyance, and in the
worst scenario, cause users to leave the site. Further, the effectiveness of the advertisements starts to
wither as more slots for banners are introduced, either because a saturation point is hit where users
learn to ignore most of the banners, or there simply is not room for more banners on the page.

An alternative strategy is to recognize that there is a limit to the number of viable banner slots,
and attempt to somehow selectively choose the ads to show according to whom the ad is being
displayed to. This is often referred to as targeted advertising or behavioral targeting. By adding
some intelligence, we can attempt to show the user advertisements he or she could potentially be
interested in instead of just uniformly picking one out of a bunch.

This paper introduces two approaches to targeted advertising. First the simpler, multi-armed bandit
model is explored in some detail. It is the classic example through which the exploration vs. ex-
ploitation trade-off has been studied. We then delve into some modifications of the model that are
useful in this setting of banner ad selection. After going through this simple model, a more complex
approach called reinforcement learning is considered. This approach allows us to take into consid-
eration situations in which the agent, the ad system, can affect the state of the user, e.g. make them
annoyed so that they leave the site.
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2 Related work

Other approaches to targeted advertising have been explored as well. Chen et al. [6] consider a
Poisson regression model to predict click-through rates from user history. They applied their large-
scale parallelized approach to Yahoo’s user base which resulted in great improvement in CTR.

Work in information retrieval may be applied to targeted advertising as well. For example person-
alized news recommendation is in some sense a very similar problem, albeit from a different view-
point. Contextual advertising is also concerned with selecting banner ads intelligently, but instead
of targeting the user, the ad is chosen according to the content being served to the user.

A different but domain-related topic is learning strategies for real-time bidding. Currently web sites
can sell ads for banner slots at an extremely granular level: a single impression. When a user visits
a site, a few hundred millisecond auction is held, in which the advertisers name their price given the
profile of the visiting user. When the time is up, the highest bidder gets their ad on the site. There
have been studies on optimal strategies for maximizing profits (i.e. balancing ad click-rate and cost)
from the viewpoint of the advertiser with [7] and without [4] the multi-armed bandit model. In any
case, the exploration vs exploitation dilemma is highlighted in this setting.

The quite recent field of applying computer science to ad selection goes under the umbrella term
computational advertising. Especially software corporations Microsoft and Yahoo conduct applied
research in this field, while the National Institute of Statistical Science (NISS) held a workshop on
the topic in 2009.

3 Approaches

Depending upon what kind of aspects of the problem we wish to take into consideration, we may
either consider targeted advertising through the simpler bandit approach, or, the more complex full
reinforcement learning approach. The first approach is limited to immediate rewards while the
second can learn from delayed rewards, i.e. rewards that are not necessarily received immediately
after performing an action [9]. The reinforcement learning approach can also capture effects the ad
displayer (the agent) has on the user (the state), for example user attrition caused by an offensive ad.

3.1 Contextual bandit

In the standard n-armed bandit problem, we are facing a slot machine with n levers. Each lever is
associated with some distinct probability distribution that determines the amount of reward received
from pulling that lever. Assuming that pulling a lever is free, but that we have a limited number
of pulls, how do we maximize the expected total reward given that we do not know the underlying
distributions? [11]

In the above situation, the exploration vs. exploitation dilemma is highlighted. After playing for a
bit, we may get a sense that some lever has rewarded us better than the rest based on our experience
so far. Do we, then, greedily continue playing that arm till the end, exploiting our current knowledge?
Or should we still explore the other levers, in case we have had bad luck and another lever has better
payout in the long run? These are the questions that bandit algorithms attempt to answer in an
optimal way.

We are especially interested in a generalization of the n-armed bandit problem, namely the contex-
tual multi-armed bandit [8], in which we receive some side-information, a context, before having to
choose the lever to pull. The setting has been outlined below.

For t = 1, ..., T (rounds)
1. Receive some context xt.
2. Choose action ai (pull lever), where i ∈ {1, ..., n}.
3. Receive reward rt ∈ R.

It should be stated that even though at first glance the multi-armed bandit may seem like a very
contrived problem, it is actually a very general framework. In the case of targeted advertising, one
way to adapt this model is as follows. The agent making the decisions is the website. The levers to
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pull are all the possible ads that can be shown in a banner slot. The reward received is 1 if a user
clicks the ad, and 0 otherwise. The context is some information gathered on the user, e.g. what pages
they have visited, gender, interests, age and so on. A more complex reward function could also be
considered, in which the reward received depends, for example, on which ad is being displayed.

3.1.1 Thompson sampling

Thompson sampling [5] is an algorithm to address the exploitation vs. exploration trade-off in the
contextual multi-armed bandit case. The idea is that we have a probability distribution on the arms
denoting the probability that each is optimal. In each round, we sample these distributions so as to
choose the next lever to pull. The distributions are then updated according to rewards experienced.

Thompson sampling can be understood in the Bayesian context as follows. Denote previous obser-
vations of contexts, pulls and rewards as D = {(xi, ai, ri) | i ∈ N}. These are modeled using a
likelihood function P (r | a, x, θ), where θ are some parameters. The posterior distribution of the
parameters is given by the Bayes rule, namely P (θ|D) ∝

∏
P (ri|ai, xi, θ)P (θ), given prior P (θ).

Assuming we knew the true parameters θ∗, we would ideally choose the lever that maximizes ex-
pected reward arg maxaE[r|a, x, θ∗]. In reality we do not know the true parameters. Instead, we
must integrate over the domain of the parameters θ, obtaining arg maxa

∫
E[r|a, x, θ]P (θ|D)dθ.

However this corresponds to only exploitation [5].

Taking exploration into consideration as well, the following equation is obtained: the probability of
choosing to perform pull a is given by∫

I
[
E[r|a, x, θ] = max

a′
E
[
r|a′, x, θ

]]
P (θ|D)dθ, (1)

where I is an indicator function that obtains value 1 when its condition is true and zero when it is
not. This integral is not directly computed, instead Algorithm 1 is used to the same effect.

Algorithm 1 Thompson sampling [5]

1: D := ∅
2: for t = 1, ..., T do
3: Receive context xt.
4: Draw θt according to P (θ|D).
5: Select at := arg maxaE[r|xt, a, θt].
6: Observe reward rt.
7: D = D ∪ (xt, at, rt).
8: end for

Let us illustrate this idea with the help of an example. Assume the standard n-armed bandits situa-
tion, in which each lever i ∈ [1, n] is distributed according to a Bernoulli distribution with success
probability θ∗i . This is equivalent to a biased coin flip, in which heads (r = 1) is observed with
probability θ∗i and tails (r = 0) with probability 1− θ∗i .

For each arm i, we maintain a separate Beta distribution modeling our belief of what the arm’s
success probability (or CTR) is. In mathematical terms, if Xi is the random variable corre-
sponding to the reward received (coin flip, click or not, 0 or 1) from pulling the i:th lever, then
Xi ∼ Bernoulli(θ∗i ), and we estimate E[Xi] ∼ Beta(Si + 1, Fi + 1), where Si is the number of
successes and Fi is the number of failures observed for the i:th arm so far. The Beta distribution is
used because it is the conjugate prior of the Bernoulli likelihood, a concept from Bayesian proba-
bility theory that roughly states that the posterior distribution stays in the same family as the prior
distribution. Furthermore, the math works out in an intuitive sense.

This example is applied as Algorithm 1 as follows. We initialize Si := Fi := 0 for all arms. Line
3 can be ignored because we are not considering context. Line 4 is performed so that each arm’s
Beta distribution is sampled. The arm with the largest sample is pulled, and its respective success
or failure counter is updated after receiving the reward. This is equivalent to the posterior update on
Line 7. The pseudocode for this Bernoulli case has been outlined in Algorithm 2.
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Algorithm 2 Thompson sampling for the Bernoulli bandit, adapted from [5]

Require: Prior parameters α and β of a Beta distribution. Typical value is 1.
1: Si := Fi := 0, ∀i ∈ [1,K].
2: for t = 1, ..., T (each round) do
3: for k = 1, ...,K (each arm) do
4: Draw θi ∼ Beta(Si + α, Fi + β) (sample each arm).
5: end for
6: Draw arm î := arg maxi θi (with largest sample) and observe reward r.
7: if r = 1 then
8: Increment success counter Sî := Sî + 1.
9: else

10: Increment failure counter Fî := Fî + 1.
11: end if
12: end for

How a Beta distribution, conveying our belief on click probability for an arm, can look like, is
illustrated in Figure 1. Shown is the history of a Beta distribution for a single arm. Naturally, each
arm would have a history of Beta distributions running parellel to the one shown in Figure 1.

From left to right of Figure 1, we start off with the initial situation in which no observations have
yet been done. The uniform prior, α = β = 1, is used so that each success probability θ∗i is believed
to be equally likely.

The second plot shows how the distribution looks like after we have observed one click of the
respective ad. Our beliefs shift towards higher click-through rates. In the third plot, 6 clicks and
3 non-clicks have been recorded. Non-clicks cause the distribution to shift a bit leftwards towards
lower CTR. The final figure shows how the distributions looks like after 300 clicks and 60 non-
clicks. We see how the distribution sharpens — it is more confident that the ’true’ CTR lays at about
300/360 ≈ 0.833.

0.0 0.2 0.4 0.6 0.8 1.0

PDF of Beta(1,1)

Expected reward
0.0 0.2 0.4 0.6 0.8 1.0

PDF of Beta(1+1,1)

Expected reward
0.0 0.2 0.4 0.6 0.8 1.0

PDF of Beta(1+6,1+3)

Expected reward
0.0 0.2 0.4 0.6 0.8 1.0

PDF of Beta(1+300,1+60)

Expected reward

Figure 1: Illustration on what a series of Beta distributions modeling the success probability of a
Bernoulli distribution can look like. On the very left is the initial uniform situation when nothing
has yet been observed. Then a single ad click click (r = 1) is observed, which tilts our belief to
higher click rates. Then 5 clicks (r = 1, successes) and 2 non-clicks (r = 0, failures) are recorded.
The final situation to the very right shows what the distribution looks like after 300 clicks and 60
non-clicks.

Figure 1 highlights the situation for only a single arm (ad). Each ad will have a respective series of
Beta distributions according to history of clicks observed. At round t we sample each ad’s current
distribution, as in Lines 3-5 of Algorithm 2, and show the ad with the highest sample. This means
that in the long run, when the distributions settle on some peaks, the algorithm will start to exploit.
However there is still randomness involved, and occasionally, other ads will be shown as well, and
their respective distributions updated.

The parameters to tinker with in this situation are the priors α and β. They can be set uniquely
for each distribution to model our prior belief that some ads will be clicked on more than others,
if, we have a strong conviction that such is the case. Chapelle et al. [5] note that even with prior
mismatches, Thompson sampling works well. Thus the defaults are often good enough in practice.
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We can also reshape the posterior distributions to be more sharp, thereby favoring exploitation, or,
we can widen them to favor exploration. The latter may be useful in situations where the distributions
are highly nonstationary. For example, in the ad banner domain, it may be that users get tired of
the same ads being displayed over a long period of time. Perhaps some big news event happens and
suddenly users are interested in clicking an ad that used to be uninteresting to them. Hence estimated
sharp click-through rates are no longer acccurate, and more uncertainty should be introduced in the
form of widening the posteriors.

In the example above, we did not consider context. To use contexts in this Thompson setting, we
need a separate distribution for each ad and user profile pair. Not surprisingly then, if the number of
ads, and especially, if the number of possible user profiles is too high, we need a huge set (possibly
of infinite cardinality) of distributions. What follows easily is that we encounter a situation, where
there are too many parameters to learn reliably. There are ways to combat this as will be seen in
Section 3.3.

While the presented approach is Bayesian, it is not fully Bayesian like the Gittins index, which
although is Bayes-optimal, can not be implemented efficiently in practice [5]. The downside of
Thompson sampling is that there is a lack of theoretical analysis. Chapelle et al. [5], however,
demonstrate empirically that it outperforms UCB [2] and ε-greedy methods in certain cases.

One such case is delayed feedback which is central to ad display. We may not process the rewards
immediately because of runtime or user constraints, e.g. system is not fast enough or user does
not immediately click on ad when on page. The feedback might be processes in batches between
which lay a long amount of time. Thompson sampling alleviates the problem of delayed feedback
by randomization over actions, while deterministic UCB suffers large regret when it gets locked on
to a suboptimal choice.

3.1.2 Mortal bandits

Most often in online advertisement, the ads (the levers) have a limited lifespans due to limited bud-
gets, seasonal holiday campaigns, and other uncontrollable factors. On the other hand, new levers
are introduced occasionally in the form of new ad campaigns. This results in a stark contradiction
between reality and our model, because the multi-armed bandit model assumes implicitly that its
levers are in existence indefinitely [3].

Chakrabarti et al. [3] introduce algorithms for mortal multi-armed bandits, a model in which levers
regularly die and new ones come to existence as replacements. One of the main results they derive
is that the regret bounds for such a situation can not be as low as for the non-mortal case. Instead of
O(ln t), a bound of Ω(t) is achieved under mortality, t being the number of rounds.

One of the main reasons for the worse bound is that in the non-mortal scenario, after finding an
optimal arm, the algorithm can thereafter concentrate on indefinite exploitation. (Maybe doing some
exploration on the side as well, to account for nonstationarity.) When arms are subject to lifetimes,
such nonchalance is out of the question. An especially challenging case arises when there are many
levers and short lifespans. Most likely, one must settle for suboptimality in such a case.

The paper [3] also describes how standard multi-armed bandits can be adapted to take mortality
into account. This is needed so that the algorithms do not spend too much time on exploration,
an investment that is not justified under mortality. The idea of the subset heuristic is to divide the
rounds t = 1...T into epochs. At the dawn of each epoch, we choose a subset of arms uniformly
at random from the set of all arms. We then run the standard multi-armed bandit algorithm on the
subset until the end of the epoch. This method is outlined in Algorithm 3.

Let us summarize Algorithm 3. It selects a random subset of the arms and then uses a multi-armed
bandit algorithm on that set until all arms considered are dead or K/2 arms have died. Then the
process is restarted: a new epoch begins. At the heart of this algorithm is the idea that we attempt to
find the optimal arm within a subset instead of the entire set of arms. The reasoning being that we
would not really benefit on using lots of time on finding optimal arms in the entire set, as effort are
quickly diminished by mortality

The classical multi-armed bandit algorithm, UCB1 [2], is extended to allow for mortality in
Chakrabarti et al. [3] in a manner described by Algorithm 3. Whether or not the subset heuris-
tic has been applied to contextual bandits and Thompson sampling is something the author of this
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Algorithm 3 Subset heuristic, adapted from [3]

Require: Integer c ∈ [1,K], any standard multi-armed bandit algorithm A
1: for t = 1, ..., T (each round) do
2: S := choose K/c random arms.
3: dead := 0.
4: Initialize algorithm A over arms S.
5: repeat
6: Select arm i using algorithm A.
7: Pull arm i, provide reward to A.
8: Sd := arms that died during turn.
9: S := S \ Sd

10: dead := dead+ |Sd|.
11: until dead ≥ K/2 or |S| = 0
12: end for

seminar report could not find material on. However, on the surface, there seems to be no forbidding
factors.

3.2 Reinforcement learning

Sometimes we may need an approach that captures more than what the n-armed bandits can offer.
Reinforcement learning generalizes the scenario of n-armed bandits by considering a more inclusive
model. We will first look at how the full reinforcement problem can be formulated as a Markov
decision process. We will then examine some algorithms for learning optimal policies for these
processes under additional challenges brought by the banner ad domain.

3.2.1 MDP

A Markov decision process (MDP) [11] is a 4-tuple

(S,A, {Pa : S × S → [0, 1] | a ∈ A} , {Ra : S × S → R | a ∈ A}). (2)

Above S is a finite set of states. A is a finite set of actions. Function Pa(s, s′) = Pr(st+1 =
s′ | st = s, at = a) gives the probability of transitioning to state s′ after performing action a in state
s. The reward function Ra : S × S → R gives the immediate reward obtained from performing
action a in state s and ending up in s′.

The simulation is started from an initial state s0 at time 0. During each discrete time step t, we are
in some state st, on the basis of which we must choose an action at, after which we are rewarded
rt ∈ R, time t is incremented by one, and we end up at state st+1 [1]. The task is called episodic
if there are end states, after which the simulation is restarted. Otherwise we call the task continuing
[11].

The central problem here, then, is to find a (near) optimal policy π for the agent performing the
actions. Given we are in state st ∈ S, π(st) indicates the action at that should be performed.
(Sometimes this is instead a probability distribution defined on set of all actions A.) The optimal
policy we wish to find is the one that maximizes the reward accumulated over time, put formally,
maximizes

∑∞
t=0 γ

tRat(st, st+1), where γ ∈ [0, 1) is the discount rate. For an episodic task,∞ can
be replaced with the total number of rounds T , or, the terms of the sum after t ≥ T can be thought
of as all being zero.

In the reinforcement learning setting, we do not know the transition probabilities Pa or the reward
functions Ra in advance. This entails that in order to find an optimal policy—solve the control
problem—we must also solve the prediction problem, or in some sense, estimate the transition prob-
abilities and rewards. We do this by means of estimating a value function.

Given a policy π, the value function Qπ(s, a) indicates the desirability of taking action a in state s.
The desirability is the expected value of the cumulative reward given that we start in state s and take
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action a, after which we strictly follow policy π. The formulation is given below, in which rt+k+1

denotes the reward procured during time t+ k + 1.

Qπ(s, a) = Eπ
[ ∞∑
k=0

γkrt+k+1 | st = s, at = a
]
, (3)

The value function Q∗ of an optimal policy π∗ satisfies the Bellman optimality equation,

Q∗(s, a) = E
[
rt+1 | st = s, at = a

]
+ γE

[
max
a′

Q∗(st+1, a
′) | st = s, at = a

]
(4)

A value function Q implicitly characterizes a policy. The policy is to always choose the action that
maximizes the value function, or, π(s) = arg maxaQ(s, a). In the case of optimal value function
Q∗, following this method leads to the optimal policy π∗ [1].

3.2.2 Relation between multi-armed bandits and reinforcement learning

There are at least two ways in which multi-armed bandits are related to reinforcement learning.

First of all, a standard multi-armed bandit can be viewed as a Markov decision process in which
there is exactly one state. The levers of the bandit are all the possible actions, and performing an
action always brings you back to the initial state. The contextual bandit model does have different
states, corresponding to different users, but the action chosen do not impact the choice of the next
state. Either the same user gets served a new ad, or another user with a different profile is served. In
the full reinforcement learning model, we can follow the lifetime of the user when they are visiting
our site. Notably, we can model how the ads displayed impact the state of the user.

There is also another link between multi-armed bandits and reinforcement learning. Many rein-
forcement learning algorithms rely on an exploitation vs. exploration strategy when choosing which
actions to test out while solving the control problem, i.e. learning a policy π. For example, popular
methods such as Sarsa and Q-learning often use something like ε-greedy to select the next action for
which to update the value function Q.

3.2.3 Temporal-difference (TD) learning

There are several ways to solve the prediction (estimatingQ∗) and the control (finding π∗) problems.
In the unrealistic situation, in which we know the transition and reward probabilities, or the dynamics
of the system, we can simply apply dynamic programming based methods such as policy iteration
or value iteration to find the optimal policy without any experience needed. The required premise
hardly ever holds in real world problems, though.

Monte Carlo (MC) methods, on the other hand, rely on experience to learn under unknown transition
and reward probabilities. MC methods wait till the end of an episode to update the value functions
of state-action pairs that were encountered during the episode. The primary idea is encapsulated in
the update rule below, where st is the state and at the action taken for time step t, α is the step-size
parameter, andRt = rt+1+γrt+2+γ2rt+3+ ...+γT−1rT is the actual discounted return following
time t.

Q(st, at)← Q(st, at) + α
[
Rt −Q(st, at)

]
(5)

For many purposes this is fine. In our case the episodes may not be episodic but continuing instead,
which does not align well with MC methods. Second, learning until an episode has finished may be
problematic if the episodes are long, because then all learning is delayed till the very end.

A method more suitable for on-line, incremental learning is temporal difference (TD) learning [10].
The idea here is that after an action has been performed and a reward received, we immediately
update the value function of the previous state-action pair accordingly. This leads to the update rule

Q(st, at)← Q(st, at) + α
[
rt+1 + γQ(st+1, at+1)−Q(st, at)

]
, (6)
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where Q(st+1, at+1) is the current estimate of the value function for state-action pair (st+1, at+1).

Essentially, TD learns estimates from previous estimates, it bootstraps, or in layman’s terms, “makes
a guess from a guess”. This is something that is also done by dynamic programming methods, so in
a sense, TD methods can be seen as a combination of MC (learning from experience) and dynamic
programming methods (bootstrapping).

Although the right-hand side of Equation 5 can be re-written as the right-hand side of Equation 6, as
is shown in Sutton’s and Barto’s book [11], we interpret the latter in a special way due to bootstrap-
ping.

With Equation 6 we effectively have a solution to the prediction problem. There are two ways in
which the control problem can be solved. Sarsa is an on-policy control method meaning that it
estimates the value function Qπ according to the current behavior policy π. The more aggressive
Q-learning is an off-policy control method that directly approximates Q∗ regardless of the behavior
policy followed by the learning procedure. The pseudocode for Sarsa is given in Algorithm 4. Q-
learning is similar, major difference being that the update rule becomes:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(7)

Algorithm 4 Sarsa, adapted from [11]

1: Initialize Q(s, a) arbitrarily.
2: for each episode do
3: Initialize state s.
4: Choose action a from s using policy derived from Q. (*)
5: for each step of episode do
6: Take action a, observe reward r and next state s′.
7: Choose action a′ from s′ using policy dervived from Q. (*)
8: Q(s, a)← Q(s, a) + α

[
r + γQ(s′, a′)−Q(s, a)

]
.

9: s← s′ and a← a′.
10: end for
11: end for

3.2.4 Eligibility traces and TD(λ) algorithm

Eligibility traces [12] allow for methods that are in between the temporal difference and Monte
Carlo methods discussed in the previous section. MC methods require the whole episode to finish
before updating, whereas TD updates after each step. In between the above infinite-step and one-step
backups, lay n-step backups that are defined as:

∆Vt(st) = α[R
(n)
t − Vt(st)] (8)

where R(n)
t = rt+1 + γrt+2 + γ2rt+3 + ...+ γn−1rt+n + γnVt(st+n) is the n-step return. When

n = 1 this is effectively the TD algorithm described previously. With n = T this is effectively
Monte Carlo. For example with t = 2, the update to state st would be based on the next two rewards
and the value of the estimated value function for state st+2.

A computationally more convenient formulation of this idea is the TD(λ) algorithm [10], in which
a weighted average of several n-step backups is considered in updates. The resulting return, called
λ-return, is of the form

Rλt = (1− λ)

∞∑
n=1

λn−1R
(n)
t . (9)

Above 0 ≤ λ ≤ 1 is a decay parameter, (1 − λ) is a normalization factor that ensures that weights
sum up to one. The idea here is that as we consider returns R(n)

t further in time from the current
point t, or as n grows, the effect of longer-time returns decay according to λ.

With λ = 0, we get the equivalent to the one-step TD method, which we from now on also denote
as TD(0). With λ = 1, we effectively get the MC methods, but this TD(1) may also be applied to
continuing tasks [11]. Finally, we denote the λ-backup as ∆Vt(st) = α[Rλt − Vt(st)].

8



The details of the TD(λ) algorithm are intricate and will not be explained here in furtherance of
brevity. A tutorial on the subject can be found in Sutton’s and Barto’s book [11]. TD(λ) only solves
the prediction problem — to learn the policy, modified Sarsa or Q-learning algorithms must be used.

3.3 Function approximation

In real world (advertisement) data there tends to be a huge amount of features (regarding a user
profile), which means that if we treat the state space of the reinforcement learning problem as the
feature space, we get a huge explosion in the number of states [1]. This means that most likely the
reinforcement learning or bandit policy will not know how to behave desirably in never-before-seen
states [11]. This problem becomes even more apparent if some features are continuous-valued.

Almost all the implementations [1], [5], [9] considered in this seminar report require some sort of
function approximation, regardless of whether they are bandit or reinforcement based. Therefore
simple algorithms based on tabular Q value functions (i.e. each state-action pair as an entry of a
table) can not be directly used.

In function approximation, we attempt to generalize from a limited subset to an entirety. In the
context of Q value functions, we attempt to generalize from a limited subset of state-action pairs
that we have experienced, to the entire set of all possible state-action pairs.

Fortunately approximating a target function by generalizing from examples is something that has
been extensively studied in machine learning under the term supervised machine learning. Methods
such as artificial neural networks, decision trees or multivariate linear regression may be used.

The central notion is that instead of a table, we represent the value function as a parameterized
functional form, where a parameter vector θt is of much smaller dimensionality than the total number
of state-action pairs. We then invoke a supervised machine learning algorithm with the state-action
pairs and their respective Q value estimates as input, to learn the parameter vector θt that minimizes
mean squared error.

It is important that the supervised learning model used exhibit two properties. First, it should be able
to learn on-line while the reinforcement learning algorithm interacts with its environment. Second,
the supervised model should be able to handle nonstationary target functions.

An example of reinforcement learning with function approximation is given in the Section 3.3.1

3.3.1 Sequential targeted marketing

We now turn our attention to a real-world application of reinforcement learning to a targeted mar-
keting task. The task [1] involved is concerned with direct-mail promotional data but the ideas may
be applied to the banner ad domain with some thought.

The data set that Abe et al. [1] used in their study was concerned with direct mail promotions for
soliciting donations. For each user, demographic data was available as well as promotion history
of 22 (monthly) campaigns pertaining to each user. Features such as user age and income bracket,
whether or not he or she responded to the last campaign, and if so, what the donation amount given
was. Also, whether the user was mailed 2 months ago, 3 months ago, whether user responded 2 or 3
months ago and so on. The data set consisted of about 100 thousand users.

Using features of the likes described above, the state of a user during different months was modeled.
Of particular interest was how the retailer’s actions affect each customer’s behavior. For example, if
too many mails are sent, a saturation point may be hit in which a customer is unwilling or unable to
donate.

Given the data described above, Abe et al. [1] present and compare three batch methods for learning
a value function Q(s, a) that gives the expected long-term reward for sending or not sending a mail
(action a) to user profile s. In their reinforcement model, there is an inherit cost for sending a mail.
Already because of this fact, sending non-effective mails should be avoided.

The first method is what they call ’direct’. It requires no model of the environment, which the authors
hypothesize is a good thing as customer behavior is notoriously difficult to accurately model. The
method uses function approximation to represent the value function Q. To this end, a multivariate
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linear regression tree method is employed which produces decision trees with multivariate linear
regression models at the leaf nodes. Sarsa learning is used to recalculate target values. The algorithm
is given in Algorithm 5.

Algorithm 5 Direct-RL (sarsa) [1]

Require: Regression module Base, input data D = {ei | i = 1, ..., N} where each episode ei =
{(si,j , ai,j , ra,ij) | j = 1, ..., li} consists of events that in turn consist of state, action and re-
ward.

1: for ei ∈ D do
2: D0,i = {(si,j , ai,j , ra,ij) | j = 1, ..., li}.
3: end for
4: D0 = ∪Ni=1D0,i.
5: Q0 = Base(D0).
6: for k = 1 to final do
7: for ei ∈ D do
8: for j = 1 to li − 1 do
9: v

(k)
i,j = Qk−1(si,j , ai,j) + αk

[
ri,j + γQk−1(si,j+1, ai,j+1)−Qk−1(si,j , ai,j)

]
.

10: Dk,i =
{

(si,j , ai,j , v
(k)
i,j ) | j = 1, ..., li − 1

}
.

11: end for
12: end for
13: Dk = ∪Ni=1Dk,i.
14: Qk = Base(Dk).
15: end for
16: return Final model, Qfinal.

The authors also present an ’indirect’ method that relies on estimating transition probabilities and
reward functions from the data. In an artificial setting where such dynamics can be accurately
estimated, this method works the best. Nonetheless, in a real world setting, such is not the case.

The middle road is what the authors advocate for. A ’direct’ method that incorporates some aspects
of the ’indirect’ method such as selective sampling to effectively change the sampling policy over
the course of learning, and using estimated rewards in place of actual observed rewards in the data
so as to make the learning more stable.

In the empirical section of their paper, Abe et al. [1] give verification to the claim that customer
behavior is too complex to model reliably. More precisely, they show via controlled experiments
that in the context of their targeted marketing data, direct methods are better than indirect methods.
They also demonstrate that their semi-direct method learns to make better profit in shorter time than
the purely ’direct’ method.

The example presented here was in the context of direct mail marketing. However, we could also
use the presented methods in the banner ad domain by representing user profiles in an appropriate
way. Assume that the actions are the ads that can be displayed in some site-wide banner slot, with
perhaps one action being not to show any ad at all. The profile of the user could be gathered from
any information they have explicitly provided (e.g. if the site supports user registration), or, the data
could be implicitly gathered by tracking what the user does on the site. Things such as user age,
gender, location, frequency of visits, keywords of pages visited etc. could be used as features.

3.3.2 Concurrent reinforcement learning

The ’direct’ method of Algorithm 5 is a batch method meaning that batches of episode data have to
be given to the algorithm in order to learn the value function. In a real situation, we may wish to
learn on-line in an iterative fashion so as to immediately improve our value function as responses
are gathered. Moreover, in a web site we may have several concurrent users to which ads are being
displayed. We may wish to learn from partial episodes so that information acquired with interactions
with one user can be quickly assimilated and applied to other users’ interactions as well.

A fairly recent method, called concurrent reinforcement learning [9], modifies TD(λ) to take the
above two improvements into consideration.
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Each episode corresponds to a user’s history with the company (web site in our case). This means
that there are potentially thousands or millions of concurrent episodes that are very long. Learning
after-the-fact in this case is not a viable option. Absence of customer interaction may be a signal of
customer attrition, caused, for example, by an undesirable sequence of interactions with the company
(e.g. offensive ad shown). Learning the actions that caused user attritions after months of inactivity
may be too late as much damage could have been already done.

In this customer interaction setting there is also the additional challenge of asynchronicity. Actions
and rewards observed may not be sequentially aligned. Further the series of interactions tend to be
very sparse when a global time step is used because most of the time, a user will not be using the
web site.

In the concurrent reinforcement learning problem, the agent interacts with many states (instances of
the environment) in parallel. We use a discrete but small time steps t and introduce null actions and
null observations when no interaction with a user is happening. In the absence of reward, a value of
zero is used.

Silver et al. [9] modify TD(λ) so that it is computationally efficient on huge data sets. By taking
advantage of the asynchronous structure of the problem, they are able to devise a more efficient
algorithm for concurrent RL.

First of all, the reinforcement learning system makes decisions only when requested, otherwise exe-
cuting null actions that do nothing. Decisions are things like choosing the ad to show, an observation
of user is obtained, or when reward is procured. Second, the optimal policy learned must take into
account the fact that non-null actions may be performed only at specific times.

The concurrent temporal-difference learning algorithm is explained in detail in Silver et al. [9].
Tersely put, it combines multi-step TD updates for asynchronous update requests with the options
framework for asynchronous decision requests.

4 Conclusions

In this seminar report, targeted advertising for ad banner CTR optimization was introduced, after
which suitable multi-armed bandit and reinforcement learning approaches for the problem domain
were presented.

Thompson sampling is a robust Bayesian approach for balancing the exploration vs. exploitation
trade-off. Mortal bandits should be considered when the ad campaigns are short-lived and rapidly
changing. To model more complex interactions with visiting users, temporal-difference based meth-
ods such as the ’direct’ method for batch data, or the novel, on-line concurrent reinforcement learn-
ing method can be utilized. As user profiles tend to be very high-dimensional feature vectors, func-
tion approximation is required to apply the presented methods to real world scenarios.

To the surprise of the author of this seminar report, there was not that much literature on how these
RL targeted advertising systems work in practice. While there were some theoretical treatments of
the subject, when it came down to practicalities, the literature tended to be very brief about them.
Understandably there is some vested interest in keeping such details secret for business reasons.
Hence, while the methods presented in this paper are on solid ground, the question of how to ap-
ply them to targeted advertising is something that this seminar report could often, at best, merely
speculate about.
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