
Automatic construction of admissible heuristics for classical
cost-optimal planning problems

Eric Andrews
Seminar: Heuristic Search, Fall 2013

Department of Computer Science, University of Helsinki

Abstract

Many interesting problems, such as finding
the cost-efficient sequence of actions for an
autonomous robot, can be cast as classi-
cal single-agent planning tasks, in which the
aim is to find a plan that solves the prob-
lem optimally. The search for a plan is of-
ten performed with state space search meth-
ods, which benefit from a guiding heuristic.
This seminar report surveys some state-of-
the-art methods for automatically deriving
such heuristics based on the description of
the planning task at hand.

1 Introduction

When solving single-agent planning problems using
best-first search algorithms, it is useful to have a
informed heuristic that guides the search through
the search space so that node expansions are min-
imized and the heuristic remains efficiently com-
putable. These two criteria are often at odds.

Coming up with heuristics that balance the trade-off
between performance and informedness has typically
been a manual endeavor requiring domain-dependent
knowledge about the planning problem on hand [3].
Not surprisingly, there is value in studying methods
that can automatically generate good heuristics for
any given arbitrary planning problem.

In this paper we will examine some state-of-the-art
methods that have been not only theoretically laid
out, but also implemented and empirically evaluated
against challenging benchmark problems. A common
theme appearing in these methods, is the abstraction
or ”relaxation” of the original problem into a new
problem that can be solved quickly, and which serves
as a basis for constructing the heuristic of interest.

Two of the presented methods are based on pat-
tern databases, which by now, are a common method
for automatically constructing domain-independent
heuristics. The last presented method borrows from
the model-checking community and is a novel approach
to building heuristics.

2 Background

To start off, we define precisely the kind of planning
problems we are considering and the kind of solutions
(plans) we are searching for them. An example is pre-
sented in order for the reader to intuitively grasp the
types of problems under consideration.

2.1 Planning task model

A planning task is a tuple Π = 〈V,O, s0, s?, c〉, where
V is a finite set of state variables. Each state vari-
able v ∈ V has an associated finite domain Dv. A
state is a complete variable assignment over V, for-
mally 〈w1, w2, ..., wn〉 where wi ∈ Di and n = |V|,
assuming the variables of V are numbered in some
way. The set of operators O consists of operators
o = 〈pre; eff 〉, where pre and eff are partial variable
assignments that define the preconditions and effects
the operator has. For an operator to be applicable to
some state s, the precondition pre has to be consistent
with s, and the resulting successor state is obtained by
updating s with the effects eff . The cost of applying
an operator is given by the function c : O → R+

0 , so
c(o) > 0 for all o ∈ O [3], [5], [7].

A plan is an applicable sequence of operators that
leads from the initial state s0 to a state that is con-
sistent with the goal s?, which is a partial variable
assignment. The cost of a plan is the sum of its oper-
ators’ costs. The solution we are interested in is the
optimal plan, which, as its name implies, is the plan
with minimum cost [3], [5], [7].

The ”classical” planning task model defined here has

been studied extensively in planning literature, and
it is compatible with real world automated planners
like STRIPS (Stanford Research Institute Problem
Solver).

2.1.1 Example

V = {A,B,C}
Dv = {0, 1, 2, 3} for v ∈ {A,B}
DC = {0, 1}
s0 = {A = 0, B = 0, C = 0}
s? = {A = 3, B = 2}
O = {act} ∪ {inck|k ∈ {0, 1, 2}} ∪ {copyk|k ∈ DA}

where act = 〈C = 0; C = 1〉
inck = 〈A = k,C = 1; A = k + 1, C = 0〉
copyk = 〈A = k,C = 1; B = k,C = 0〉

c(o) = 1 for all o ∈ O

Figure 1: Example Planning Task (stylistically
adapted from [5])

An example of a simple planning task is given in Fig-
ure 1. There are three variables A,B,C of which the
latter has a smaller domain than the previous two. The
initial state starts with all variables being zero and the
goal we are aiming for is A = 3, B = 2 and C can be
any value in its domain. In the context of this particu-
lar planning task, variable C acts as a sort of activator
boolean that is necessary to be ”on” (=1) in order to
increment A with operator inck or copy the value of
A into B with operator copyk. The optimal plan for
this problem is 〈act, inc0, act, inc1, act, copy2, act, inc2〉
with a cost of 8.

The example presented here is very simplified and is
not a fair demonstration of the complexity of problems
that can be solved using this model. Sokoban, (n2−1)-
Puzzles and a variety of real world logistical problems
can be modeled using this framework. 1

3 Methods

Let us now consider the problem of automatic con-
struction of an admissible heuristic for any given plan-
ning task. The methods presented here are based on
building an abstraction of the original planning task
which is easier to solve in terms of memory use and

1A vast collection of tasks can be found at the IPC-
2011 (International Planning Competition 2001) homepage
http://www.plg.inf.uc3m.es/ipc2011-deterministic/

computation time. This abstraction is then used as
the heuristic.

There are two main questions that the methods need to
answer in order to be able to derive heuristics. What
are the abstractions like (the abstraction model), and
with that in mind, how do we generate, evaluate and
choose between viable abstractions.

3.1 Pattern database approaches

We start off by exploring the pattern database ap-
proaches to abstraction. First we look into seminal
work done by Haslum et al. [3], after which we will
see how further work [5] attempts to improve on this
by means of linear programming. Thirdly and finally,
in Section 3.2, we consider a quite different approach
to the two main questions [7].

3.1.1 Abstraction, patterns, pattern
databases

An abstraction of a planning task Π is obtained by
considering a subset of its state variables P ⊆ V called
a pattern. In the process, we remove from the precon-
ditions and effects of operations, and from the initial
state and goal, all variables not in P . This results in
a smaller planning task, whose states we call abstract
states, and we denote by hP (s) the minimum cost of
reaching a goal from the abstract state corresponding
to the original state s [3], [5].

As we have only relaxed constraints, intuitively it is
clear that hP (s) works as a lower bound for the cost
of reaching a goal from s in the original state space.
Thus hP is an admissible (and consistent) heuristic [3].

If we abstract the planning task in Figure 1 with the
pattern P = {A,B}, leaving out C, the following hap-
pens. The set of state variables reduces to {A,B}.
The starting state becomes {A = 0, B = 0} and goal
state remains unchanged as it didn’t contain C to be-
gin with. The new operators are: act = 〈; 〉, inck =
〈A = k;A = k + 1〉 and copyk = 〈A = k;B = k〉. The
optimal plan for this new planning task is then
〈inc0, inc1, copy2, inc2〉 with a cost of 4.

A pattern database [2] (PDB) is a table of precom-
puted cost-to-goal information for all abstract states
for some pattern. PDB heuristics, which we will be
concerned with, use these tables to report heuristic es-
timates. It is desirable from a computational stance
that the number of abstract states (bounded above by∏

v∈P |Dv|) stay small. Otherwise a large cost-to-goal
table needs to be computed and stored [3], [5].

http://www.plg.inf.uc3m.es/ipc2011-deterministic/

3.1.2 Pattern collections and the canonical
heuristic

The approach by Haslum et al. [3] considers a collec-
tion of patterns rather than just a single large pattern.
The problem with the latter is that the size of the ab-
stract state space grows quickly as more variables are
included. This makes calculating and storing the cor-
responding PDB infeasible in many cases. To under-
stand how patterns can be combined into collections
that can be used as heuristics, some definitions are in
order.

An admissible heuristic h dominates another h′ iff
h(s) ≥ h′(s) for all states s. Evidently, if A and B
are patterns such that A ⊆ B, then hB dominates hA.
Furthermore, hA acts as an admissible heuristic for the
(abstract) planning task of B.

Given two PDB heuristics hA and hB , both are
dominated by the admissible heuristic h(s) =
max (hA(s), hB(s)). In the case where the set of oper-
ations that affect some variable in A is disjoint from
the set of operations which affect any variable in B,
we say that patterns A and B are (pairwise) additive.
Additivity ensures that h(s) = hA(s) + hB(s) is an
admissible heuristic, and this heuristic dominates the
maximum shown earlier.

It is desirable of course to be able to utilize the additiv-
ity relationship among patterns for stronger heuristics.
For a collection of patterns C = {P1, ..., Pk}, however,
it is rarely the case that all patterns would be pairwise
additive. So we try the best we can with the canoni-
cal heuristic, which is a combination of PDB heuristics
resulting in a strong, admissible heuristic. Let A be
the collection of all maximal (in terms of set inclusion)
additive subsets of C. The canonical heuristic function
is then

hC(s) = max
S∈A

∑
P∈S

hP (s). (1)

3.1.3 iPDB procedure

Armed with the knowledge of the abstraction model,
it is time to delve into how to actually find and choose
the pattern collections of interest. The question we ad-
dress is: given a planning problem and limited amount
of memory that may be allocated to the PDBs, how do
we find and choose a collection of patterns that satisfy
the memory requirements while giving the best search
performance?

Haslum et al. [3] view the problem as a discrete opti-
mization problem and devise a hill-climbing algorithm
to find a local optimum, as the true optimum requires
an exhaustive search due to the memory limit [3]. The
search space used in the hill-climbing consists of states

that represent pattern collections. The neighborhood
of a state SC consists of pattern collections that can be
made from the pattern collection C of SC by a certain
modification.

The algorithm starts off with a collection consisting of
one pattern per goal variable (variable that appears
in the goal), each containing only that variable. The
main loop of the algorithm constructs several new col-
lections C ′ from the current collection C, by select-
ing a pattern P ∈ C and a variable v 6∈ P , and set-
ting C ′ = C ∪ {P ∪ {v}}. Every collection C ′ whose
patterns’ PDBs’ memory use stays below the memory
limit is considered a neighbor.

In the next step, the best neighbor C ′ is set as the
collection C for the next iteration. The main loop
continues to carry on, until at some point, no neighbor
satisfies the size limit or the improvement in heuristic
quality is insignificant. Note that because C ⊆ C ′, the
heuristic quality cannot decrease in between iterations.

Given that we expand the neighborhood of C and have
several choices of C ′, how do we choose the one that
generates the strongest heuristic? In Haslum et al. [3]
it is motivated that we can use a relative measure that
predicts the improvement of C ′ with respect to C.

The counting approximation draws a uniform random
sample of m states {s1, ...sm} from the original plan-
ning task at hand (using random walks), and measures
the ratio for which hC(si) < hC

′
(si) where i ∈ [1,m].

Therefore a collection C ′ is ranked high, if it is able to
improve the heuristic estimate for many of the states.
The authors [3] also introduce a more accurate predic-
tor, which takes into account the number of states in
the search tree within some cost bound.

Along with the steps explained above, Haslum et al.
[3] introduce some pruning criteria and optimizations
based on causal relationships of the state variables that
make the hill-climbing procedure feasible in practice.

3.1.4 Linear programming method

Let us ignore the canonical heuristic for a moment,
and reason through a stronger way of combining a col-
lection of patterns into an additive heuristic [5].

For each operator o ∈ O in a given planning task
Π, introduce a variable Xo, which is the total cost
contributed by the operator o in some (fixed) optimal
plan. In the example given in Figure 1, variable Xact

would equal 4, as operator act has a cost of 1 and is
called 4 times in the optimal plan. Clearly Xo ≥ 0 for
all operators, and the cost of the optimal plan can be
represented as

∑
o∈OXo.

Suppose P is a pattern of planning task Π. The

equivalent heuristic hP being admissible, it must
hold that hP (s) ≤

∑
o∈OXo. This bound can

be further tightened by realizing that operators o
not affecting any variable in P do not contribute
to the cost of the optimal plan in the abstract
task. Therefore hP (s) ≤

∑
o∈O′ Xo, where O′ =

{o = 〈pre, eff 〉 ∈ O | eff affects variables in P}.

There is still room for some reduction in the number
of variables Xo. This is done in order to make the
soon presented linear program feasible in practice [5].
Assume we have two (or more) operators o1 and o2 and
a pattern collection C. We can combine the variables
into a single variable Xo1,2 = Xo1 + Xo2 if o1 and
o2 affect the same subset of patterns in C. Combining
variables as described above, leads to a partition O/ ∼
on the respective operators O.

The post-hoc optimization heuristic [5], hPhO(s), for a
planning task Π, a pattern collection C = {P1, ..., Pk},
and a state s of Π, can be estimated by the objective
value of the following linear program:

Minimize
∑

[o]∈O/∼

X[0] subject to

∑
[o]∈O/∼,[o] affects Pi

X[0] ≥ hPi(s) for all i ∈ {1, ..., k}

X[0] ≥ 0 for all [o] ∈ O/ ∼

To solve this linear program, the PDBs of the patterns
in C must be known. After calculating and plugging
in the heuristic estimate of reaching a goal from state
s for all patterns in C, or hPi(s) for all Pi ∈ C, we can
solve the linear program to attain a strong heuristic
estimate that utilizes all of the patterns.

The admissibility of the heuristic is guaranteed by the
individual patterns it is composed from, due to all ac-
counted costs being justified by the admissibility of
some component heuristic [5].

Why hPhO dominates the canonical heuristic is proved
in detail by Pommerening et al. [5]. The intuition is
that the linear program can be viewed from a maxi-
mization perspective by considering its dual program.
The objective function of the dual program is similar
to that of Equation 1 (canonical heuristic function),
except that instead of choosing the maximum, a coeffi-
cient (≤ 1) is put in front of each heuristic summation.
The coefficients are constrained by the operators, and
the objective is to maximize the objective function.

The post-hoc optimization heuristic can therefore be
seen as the LP relaxation of the integer program for-
mulation of the canonical heuristic. Rather than hav-
ing to select a single 1 coefficient with the rest being
0, we can instead adjust the coefficients arbitrarily.

Consequently hPhO dominates hC as there are more
coefficient configurations that can be chosen.

The hill-climbing procedure (iPDB) presented earlier
can be used in conjunction with the newly presented
heuristic. However, according to Pommerening et al
[5], a more effective method is to systematically gen-
erate and include all patterns up to a given size in the
pattern collections. Further pruning criteria based on
causal relationships of state variables is then needed
in order to prevent the collections from becoming too
large and to exclude useless patterns.

3.2 Cartesian abstraction approach

The approach presented by Seipp and Helmert [7] is
based on a method called Counterexample-guided ab-
straction refinement (CEGAR) which has been ex-
plored previously [1] in model-checking literature.

In the context of model-checking, suppose we have a
concurrent system and we want to verify whether a
certain property holds in it. The idea of CEGAR is
to start off with a coarse abstraction of the system,
in which we search for an error trace that violates the
property of interest. If and when we find one, we check
if that error trace generalizes to the actual system,
and if not, the abstraction is refined just enough so as
to guarantee that the same error trace will never be
encountered again. From there the process repeats. If
an error trace does generalize, we have found out that
property does not hold in the system.

Before going into the details of the algorithm, and
especially how it is applied to the construction of
domain-independent heuristics, we will look at the ab-
straction model considered by Seipp and Helmert [7].

3.2.1 Cartesian abstraction

A transition system is a tuple T = 〈S,L, T, s0, S?〉
consisting of a finite set of states S, a finite set of
transition labels L, a set of transitions T ⊂ S×L×S,
an initial state s0, a set of goal states S? ⊆ S, and
a cost function c : L → R+

0 assigning each label an
associated cost.

A planning task Π induces a transition system as fol-
lows. The states of Π (complete variable assignments
over V) become the states S. The operators O become
the labels L. Initial state is kept as it is. Goal states
S? are all states that are consistent with the partial
variable assignment s? of Π. Transitions T are all the
possible relations that can be between the states of Π
with operators in O.

Suppose we have a planning task Π and the transition
system T induced from it. Let’s define an equivalence

relation ∼ on their states called the abstract relation.
This relation partitions the states into equivalence
classes which we consider the abstract states. Nota-
tionally [s]∼ denotes the equivalence class to which
state s belongs to in the abstraction.

Using the relation ∼ we can modify T into an ab-
stract transition system that has the following dif-
ferences compared to the original. The set of states
is now {[s]∼|s ∈ S}, initial state is [s0]∼, goal states
are {[s?]∼|s? ∈ S?}. Finally, the transitions become
{〈[s]∼, l, [s′]∼〉 | 〈s, l, s′〉 ∈ T}.

This resulting abstract transition system can then be
used as an admissible (and consistent) heuristic. The
heuristic function h∼(s) is the minimum cost from [s]∼
to some goal state in S?.

As was mentioned earlier, the CEGAR algorithm
works by making minor modifications to the abstrac-
tion in order to prevent certain traces from reoccur-
ring. Unfortunately pattern databases do not support
granular modification, as each time a variable is added
to a pattern, the number of possible abstract states at
least doubles.2 This is why an alternative abstraction
is proposed, one that supports more fine-grained re-
finement.

A set of states is Cartesian if it is of the form
A1 × A2 × ... × An, where Ai ⊂ Dvi for all i ∈ [1, n],
where Dvi is the domain of state variable vi. A Carte-
sian abstraction is a specific kind of abstract transition
system. One in which every abstract state, or equiva-
lence class, can be represented as a Cartesian set.

Just to be clear, it is not trivial for a set of states to be
Cartesian. For example, the set consisting of 〈0, 0, 0〉
and 〈1, 1, 1〉 can’t be represented in Cartesian form.
The closest thing is {0, 1} × {0, 1} × {0, 1}, but this
entails other possibilities like 〈0, 1, 0〉.

3.2.2 Example

Let’s use the planning task presented earlier in Fig-
ure 1 as an example. The transition system induced
from this task is visualized in Figure 2.

In total there are 32 states in the transition system,
of only which a portion is shown for convenience. The
initial state s0 = 0, 0, 0 is in the lower left corner. Us-
ing the edges of the graph, the aim is to get into either
goal state in the set S? = {3} × {2} × {0, 1}. The
alert reader may have noticed by now that what the
transition system really amounts to, is an explicit rep-
resentation of the state space of the planning task.

2A variable has at least two values, e.g. {0, 1}. Thus if
there were previous n possible combinations of state vari-
ables, now there are at least 2n.

0,0,0

0,0,1

1,0,0

1,0,1

1,1,0

2,0,0

copy0 act inc0 act inc1

copy1

act

act

Figure 2: Visualization of transition system induced
from running example. Only a region of the state space
is shown. Each node i, j, k corresponds to state A = i,
B = j and C = k.

An example of a Cartesian abstraction of this partic-
ular transition system is given in Figure 3. Notice
how each of the original 32 states are captured by
either abstract state but not both. A Cartesian ab-
straction partitions the original state space into non-
overlapping, non-empty subsets. An additional im-
plied requirement stemming from the definition is that
these subsets need be represented as Cartesian sets.
The presented abstraction is actually not very useful,
since both of its abstract states are considered goals,
making its heuristic estimates always 0.

inck
copyk

act

{0,1,2,3} x {0,1,2,3} x {1}{0,1,2,3} x {0,1,2,3} x {0}

Figure 3: An example of one possible Cartesian ab-
straction of the transition system given in Figure 2.
There are actually several edges going from right to
left, but they have been labeled as a single edge for
convenience.

3.2.3 Refinement algorithm

The pseudocode for the iterative refinement process is
given in Algorithm 1. The algorithm starts off with
initializing the abstract transition system T ′ to be the
trivial Cartesian abstraction containing only a single
all-capturing abstract state, namely Dv1 ×Dv2 × ...×
Dvn . Note that the Cartesian abstraction T ′ is repre-

Algorithm 1 Refinement Loop (slightly altered [7])

1: T ′ ← TrivialAbstraction()
2: while not Terminate() do
3: τ ′ ← FindOptimalPlan(T ′)
4: if τ ′ is undefined then
5: return task is unsolvable
6: end if
7: φ← FindFlaw(τ ′)
8: if there is now flaw in φ then
9: return plan extracted from τ ′

10: end if
11: Refine(T ′, φ)
12: end while
13: return T ′

sented as an explicit graph at all times.

The algorithm keeps on refining T ′ until a time or
memory limit is hit, after which the current T ′ can be
used in building a heuristic.

The main loop functions as follows. In Line 3 we com-
pute an optimal solution to the abstract transition sys-
tem T ′. If none is found, then it can be safely said
that the original problem is neither solvable as there
are only more constraints there. In Line 7 we attempt
to apply the operators of the found plan τ ′ to the orig-
inal planning task. In the unlikely scenario that this
works, the original task has actually been solved using
the abstract one. Most likely, however, a flaw will be
found, which we then use to refine the abstraction T ′.

The flaws that can be found are listed below.

1. An operator is not applicable at some state si−1.

2. Operators were applicable, but end state sn is not
a goal.

3. At some point, [si] 6= [s′i], where si is the state
of the original planning task and [s′i] the abstract
state of the abstract planning task after applying
the i:th operation.

In each of the three cases, T ′ is refined by splitting up
the problematic abstract state [s′] into two, according
to rules explained next, respectively numbered.

1. Split [si−1] into those states in which the operator
applies, and those in which it does not.

2. Split [sn] into those states that are goals, and
those which are not.

3. Split [si−1] into those states that cannot lead to
any state in [s′i] after applying the i:th operation,
and vice versa.

After the appropriate split has been decided, the old
state is replaced with two new states. This requires
some ”rewiring” of transitions. For each incoming and
outgoing transition of the removed state, we need to
decide to which of the new states it re-connects to.

The Cartesian sets are closed under the presented
splits above. Hence it is guaranteed that T ′ is a
Cartesian abstraction at all times. From a perfor-
mance perspective, splitting and rewiring can be done
in O(

∑
v∈V Dv) [7].

4 Comparison

An empirical evaluation of performance, common to
each of the presented papers, was to see how many in-
stances of some planning task type the methods could
solve in some time and memory bounds. This included
both the resources required to construct the heuristic
and to solve the task using best-first search.

The oldest and first presented of the three methods,
iPDB , was able to solve many easy-to-normal Sokoban
puzzles and a majority of 15-puzzles in experiments
conducted by Haslum et al. [3]. Sokoban especially
is a planning problem that has been difficult even for
domain-specific solvers. 24-puzzles, while solvable by
domain-specific solvers, were out of reach for domain-
independent solvers at least back in 2007.

The empirical results by Pommerening et al. [5] of
using the post-hoc optimization heuristic instead of
the canonical heuristic are interesting. When using
the hill-climbing (iPDB) procedure, canonical heuris-
tic fairs better. The opposite is true with systematic
pattern generation. Generally though, the post-hoc
fairs better than the canonical heuristic. However even
when considering the post-hoc optimization heuristic,
the clear winner is the state-of-the-art LM-cut heuris-
tic [4], based on landmarks and delete relaxation.

The CEGAR approach loses to iPDB in terms of num-
ber of solved tasks in experiments conducted by Seipp
and Helmert [7]. However the results, which compare
CEGAR to other approaches as well, hint that there
may be a certain robustness to CEGAR. It is seldom
the best or the worst performer, staying in the ”middle
ground” most of the time. Also compared to iPDB,
CEGAR’s heuristic estimates grows more smoothly
with respect to number of abstract states.

Just recently there has been further development of the
CEGAR approach that considers, similarly to the pat-
tern database approaches, multiple patterns instead of
just one [6]. The experimental results look promising
with the new CEGAR solving 475 tasks compared to
407 with old CEGAR and 442 with iPDB.

A final point should be made about the nature of eval-
uating these methods empirically. Alongside science,
there is significant competition and engineering that
goes into this area of research as well. This means that
older algorithms, like iPDB, may be more polished
than newer candidates. For example, the version of
iPDB pitted against CEGAR has been enhanced with
further optimizations [8] not present in the original pa-
per. Of course progress in hardware also expands the
set of problems that can be solved with these methods.

5 Conclusion

In this seminar report, the planning task formalism
was introduced, and an overview was given of some
techniques for automatically constructing admissible
heuristics for planning tasks. Constructing a heuristic
for a planning task, and afterwards searching for an
optimal plan using best-first search (e.g. A*) with the
heuristic is, in many cases, faster than searching with
a bad or no heuristic at all.

Stating which heuristic construction technique is best
is hard, because there are trade-offs to be considered.
For example, how many instances of a planning task
type can be solved? In what time and memory con-
straints? How elegant or theoretically-sound is the
technique? Or more generally, what combination of
generation, evaluation and abstraction leads to the
best results? To the author of this seminar report,
CEGAR seemed to be the most elegant, and research
on it looks promising.

From what I gathered, this is a very active area of re-
search, as there were plenty of papers written on this
subject this year alone. One key question in this line of
research is, what kind of abstractions of the planning
task result in good heuristics? Just as importantly,
how should one actually generate and evaluate these
abstractions? I found both to be very interesting ques-
tions, and there seems to be room for new answers to
be discovered.

References

[1] Edmund Clarke, Orna Grumberg, Somesh Jha,
Yuan Lu, and Helmut Veith. “Counterexample-
guided abstraction refinement”. In: Computer
aided verification. Springer. 2000, pages 154–169.

[2] Joseph C. Culberson and Jonathan Schaeffer.
“Pattern databases”. In: Computational Intelli-
gence 14.3 (1998), pages 318–334.

[3] Patrik Haslum, Adi Botea, Malte Helmert, Blai
Bonet, and Sven Koenig. “Domain-independent
construction of pattern database heuristics for

cost-optimal planning”. In: AAAI. Volume 7.
2007, pages 1007–1012.

[4] Malte Helmert and Carmel Domshlak. “Land-
marks, Critical Paths and Abstractions: What’s
the Difference Anyway?” In: Proceedings of the
19th International Conference on Automated
Planning and Scheduling (ICAPS 2009). 2009,
pages 162–169.

[5] Florian Pommerening, Gabriele Röger, and Malte
Helmert. “Getting the Most Out of Pattern
Databases for Classical Planning”. In: Proceed-
ings of the 23rd International Joint Conference
on Artificial Intelligence. 2013, pages 2357–2364.

[6] Jendrik Seipp and Malte Helmert. “Additive
Counterexample-Guided Cartesian Abstraction
Refinement”. In: Late-Breaking Developments in
the Field of Artificial Intelligence - Papers Pre-
sented at the Twenty-Seventh AAAI Conference
on Artificial Intelligence. 2013, pages 119–121.

[7] Jendrik Seipp and Malte Helmert.
“Counterexample-guided Cartesian abstrac-
tion refinement”. In: Proceedings of the 23rd
International Conference on Automated Planning
and Scheduling (ICAPS 2013). AAAI Press.
2013, pages 347–351.

[8] Silvan Sievers, Manuela Ortlieb, and Malte
Helmert. “Efficient Implementation of Pattern
Database Heuristics for Classical Planning”. In:
Proceedings of the Fifth Annual Symposium on
Combinatorial Search (SOCS). 2012, pages 105–
111.

