
Software Design (C++) Course Project
Eric Andrews

013594545

Autumn 2010

Department of Computer Science, University of Helsinki

Task: implement a singly linked list of string values in C++

The given task was to implement a singly linked list which stores string values. The list itself
should contain standard data-type operations, ability to access, pop and push to front of list,
iterator-support for traversing the list, the ability to modify the list in an arbitrary position via
iterators, and finally, special operators for reversing and swapping lists.

Furthermore, technical requirements were set: comprehensive automated unit testing and
verification of preconditions, postconditions along with class invariants in a liberal manner.

Implementation

I divided the list and the iterators into two separate modules to keep the code less cluttered.
In the list file I also defined a struct named SNode to represent a single node in the list, and
an exception specific to the list-class. Similarly I defined an exception for iterators in the
iterator file. Because we weren't allowed to use existing testing frameworks, I wrote my own
mini testing framework.

SList

Contains a single data member, namely the pointer to the first node, which is NULL when the
list is empty. Member functions throw an SlistException if a precondition fails.
Postconditions are checked with the assert-facility when applicable. Class invariants are
checked before and after performing computations that may alter the state of the object.

Special or nontrivial decisions and solutions:

– insert_after on begin()-iterator of empty list throws an exception.

– One cannot input strings containing whitespace via input operator because whitespace
are interpreted as delimiters. Example: { hello world } can't be inputted as “hello world”.

– There must be whitespace between the closing curly bracket and the last value when
using input operator. Otherwise the closing bracket will be interpreted as part of the last
value. Example: { hello world} } is interpreted as “hello” and “world}”.

– Member functions that take iterators as parameters are tested extensively. Basically
we check whether the given iterator points to the list by going through to whole list.
This operation costs O(n). In real world usage these checks should be turned off.

– Class invariant is checked by member function check(). The function verifies that the
list doesn't contains loops by applying the "The Tortoise and the Hare Algorithm". It

also checks that empty() works as expected. The function costs O(n) and should be
removed from use in real world code.

SListIterator and SListConstIterator

Iterators' data consist of a single pointer to a node. To avoid repeating myself, I set up a class
hierarchy between the const iterator and it's non-const counterpart so that the latter derives
from the first. To enhance encapsulation I gave SList friend-access to privates, and made
the derived iterator (non-const) use the base class through protected members.

Special or nontrivial decisions and solutions:

– An end()-iterator is defined so that its node pointer is a NULL.

– Similarly begin() for an empty list points to NULL. Thus begin == end.

– There is no “pure” zero-argument constructor. To achieve the same functionality I use
NULL as a default value in the default constructor of both iterators.

– Because of an compiler problem called circular dependency, I am unable to include the
list header directly into the iterator header via #include. Instead I use forward
declaration to notify the compiler of the existence of the list and node.

test_helpers.cpp and test_helpers.hpp

Contains helper (template) functions for asserting that two objects are equal (==), not equal
(!=), same (same pointer address?) and not same. Also allows asserting whether an
expression evaluates to true or false, and contains a function to signal failure when an
exception should have been thrown but wasn't.

Tests are run through TestRunner. It is first given pointers to the test functions along with
verbal explanations for each test, and then the tests are run. After completing each test it will
indicate whether the test passed (OK) or failed. A test function will fail if an assert evaluates to
the opposite of what was expected, or if an exception is thrown by something in the code. If a
3rd-party exception is thrown (Not AssertionFalseException) the whole test suite will
stop there and allow the exception to propagate upwards. Otherwise the test suite will
continue normally.

s_list_tests.cpp, s_list_iterator_tests.cpp

Both contain several tests for testing out the list and the iterators along with a function that tie
tests to verbal descriptions and passes the whole thing to a test runner. main.cpp combines
list tests and iterator tests, and provides means to run them both.

Compiling and running (Linux)

Use provided makefile for easier compilation. Compile simply by executing make in terminal
and run by executing ./tests.

	Software Design (C++) Course Project
	Task: implement a singly linked list of string values in C++
	Implementation
	SList
	SListIterator and SListConstIterator
	test_helpers.cpp and test_helpers.hpp
	s_list_tests.cpp, s_list_iterator_tests.cpp

	Compiling and running (Linux)

